Composition and structure of the RuO 2 ( 110 ) surface in an O 2 and CO environment : implications for the catalytic formation of CO

نویسنده

  • Matthias Scheffler
چکیده

The phase diagram of surface structures for the model catalyst RuO2(110) in contact with a gas environment of O2 and CO is calculated by density-functional theory and atomistic thermodynamics. Adsorption of the reactants is found to depend crucially on temperature and partial pressures in the gas phase. Assuming that a catalyst surface under steady-state operation conditions is close to a constrained thermodynamic equilibrium, we are able to rationalize a number of experimental findings on the CO oxidation over RuO2(110). We also calculated reaction pathways and energy barriers. Based on the various results the importance of phase coexistence conditions is emphasized as these will lead to an enhanced dynamics at the catalyst surface. Such conditions may actuate an additional, kinetically controlled reaction mechanism on RuO2(110).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Structure and Catalytic Performance of N4-Macrocycles of Fe III and Co II for Oxidation of Hydroquinone

Macrocycles and p-benzoquinones (p-BQ) have been generally connected as potential co-synergist redox models in aerobic oxidation. To get insight for the synergist oxidation of hydroquinones (H2Q), thus, we synthesized and characterized dibenzotetraaza [14]annulene type macrocycles of FeIII and CoII metal ions and described by utilizing different examinations inc...

متن کامل

Electrocatalytic oxidation of formaldehyde on novel composite of nickel/triton-x100/poly(o-aminophenol-co-aniline)

Oxidation of formaldehyde (HCHO) is very important, owing to its use in fuel cells. Modification of electrodes surfaces is an excellent way to decrease the overpotentials as well as to increase the current density of the voltammetric response.pt as most efficient metal catalyst can easily be poisoned by product of oxidation and also it has high cost. In this work an efficient and low cost elect...

متن کامل

Catalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT

Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...

متن کامل

Au nano dendrites/composition optimized Nd-dopped cobalt oxide as an efficient electrocatalyst for ethanol oxidation

In this study, Nd-doped cobalt oxide (Nd-Co3O4) nanoparticles were prepared by a combustion synthesis procedure using Co(acac)3 complex. The nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Then, the effect of Nd-Co3O4 ...

متن کامل

Fischer–Tropsch Synthesis with Cu-Co Nanocatalysts Prepared Using Novel Inorganic Precursor Complex

The structural properties and activities of Cu-Co catalysts used in Fischer-Tropsch synthesis are explored according to their method of preparation. Impregnation, co-precipitation, and a novel method of thermal decomposition were applied to an inorganic precursor complex to generate the Cu-promoted alumina- and silica-supported cobalt catalysts. The precursors and the catalysts obtained by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008